Tuesday, March 31, 2020

Aerospace Engineering Education and Training

Aerospace Engineering Education and Training

There are small number of schools that offer associate degrees in aerospace engineering, but they usually reserve those degrees for engineers who have degrees in related fields, such as mechanical, electrical or computer engineering. Generally, the aerospace industry prefers job seekers with four-year Bachelor of Science degrees.

Bachelor of Science Degree in Aerospace Engineering

There are only a handful of universities accredited by the Accreditation Board for Engineering and Technology in the United States that offer aerospace engineering degrees. Aerospace engineers take two years of calculus, differential equations, physics and chemistry and two years of engineering coursework. Aerospace engineering students can expect to see the following engineering courses in their university's curriculum:
  • Statics
  • Dynamics of aerospace systems
  • Control of aerospace systems
  • Aerodynamics
  • Thermodynamics
  • Flight software systems
  • Aerospace instrumentation and experimentation
  • Aerospace structures
  • Aircraft flight dynamics
  • Space flight dynamics
  • Vibration and elasticity
  • Aircraft propulsion and power
  • Space navigation and guidance
  • Space propulsion and power
  • Aeronautical systems design
  • Space systems design
In terms of career choices, the aerospace field is projected to grow 5% between 2010-2020 according to the Bureau of Labor Statistics (BLS). Aerospace engineering majors can choose variety of career paths, including positions in scientific research, engineering design and development, field service, management, marketing, software development and teaching.
The two main branches of aerospace engineering degrees are aeronautics and astronautics. Some universities have curriculum's that embrace both areas, while others separate the two fields and offer degree programs in either aeronautics or astronautics. Aerospace engineering majors should be prepared to engage in a significant amount of actual design and implementation in addition to coursework.
In addition, students should seriously consider learning Russian, Japanese or German because many people of these nationalities are deeply involved in the development of spacecraft components.

Monday, March 30, 2020

Data Communication & Computer Network

Data Communication & Computer Network

Data communications refers to the transmission of this digital data between two or more computers and a computer network or data network is a telecommunications network that allows computers to exchange data. The physical connection between networked computing devices is established using either cable media or wireless media. The best-known computer network is the Internet.
This tutorial should teach you basics of Data Communication and Computer Network (DCN) and will also take you through various advance concepts related to Data Communication and Computer Network.

Network Basic Understanding

A system of interconnected computers and computerized peripherals such as printers is called a computer network. This interconnection among computers facilitates information sharing among them. Computers may connect to each other by either wired or wireless media.

Network Engineering

Networking engineering is a complicated task, which involves software, firmware, chip level engineering, hardware, and electric pulses. To ease network engineering, the whole networking concept is divided into multiple layers. Each layer is involved in some particular task and is independent of all other layers. But as a whole, almost all networking tasks depend on all of these layers. Layers share data between them and they depend on each other only to take input and send output.

Thursday, March 26, 2020

Data-link Control & Protocols

Data-link Control & Protocols


Flow Control

When a data frame (Layer-2 data) is sent from one host to another over a single medium, it is required that the sender and receiver should work at the same speed. That is, sender sends at a speed on which the receiver can process and accept the data. What if the speed (hardware/software) of the sender or receiver differs? If sender is sending too fast the receiver may be overloaded, (swamped) and data may be lost.
Two types of mechanisms can be deployed to control the flow:
  • Stop and Wait
    This flow control mechanism forces the sender after transmitting a data frame to stop and wait until the acknowledgement of the data-frame sent is received.
  • Sliding Window
    In this flow control mechanism, both sender and receiver agree on the number of data-frames after which the acknowledgement should be sent. As we learnt, stop and wait flow control mechanism wastes resources, this protocol tries to make use of underlying resources as much as possible.

Error Control

When data-frame is transmitted, there is a probability that data-frame may be lost in the transit or it is received corrupted. In both cases, the receiver does not receive the correct data-frame and sender does not know anything about any loss.In such case, both sender and receiver are equipped with some protocols which helps them to detect transit errors such as loss of data-frame. Hence, either the sender retransmits the data-frame or the receiver may request to resend the previous data-frame.
Requirements for error control mechanism:
  • Error detection  - The sender and receiver, either both or any, must ascertain that there is some error in the transit.
  • Positive ACK  - When the receiver receives a correct frame, it should acknowledge it.
  • Negative ACK  - When the receiver receives a damaged frame or a duplicate frame, it sends a NACK back to the sender and the sender must retransmit the correct frame.
  • Retransmission:  The sender maintains a clock and sets a timeout period. If an acknowledgement of a data-frame previously transmitted does not arrive before the timeout the sender retransmits the frame, thinking that the frame or it’s acknowledgement is lost in transit.

Wednesday, March 25, 2020

Thermal Engineering Degrees

Thermal Engineering Degrees

A range of private enterprises actively seek to add thermal engineers to their organizations. From technology firms and automotive companies to utility power firms, the skills of a thermal engineer are sought to deliver efficient solutions to energy problems. Specifically these companies integrate engineers into projects such as refining power converters and circuit breakers; overseeing thermal design projects including analysis and manufacturing integrity; collaborating with manufacturing groups and vendors internally and externally to manage a product development cycle; and analyzing risks and opportunities with a given product or system. Traditionally, these professionals are required to travel to various locations for in-person consultations and evaluations of a facility or project. More senior professionals who assume management roles are required to recruit and manage teams of engineers in bringing to fruition a project within a designated corporate budget. Communication and people skills, of course, are a vital asset for professionals in this capacity. Global corporations such as Google, General Motors, Duke Energy, and Apple are a few of the firms seeking thermal engineers of various backgrounds to lead and execute their industry initiatives.
Though most universities in the United States do not offer formal degrees in thermal engineering, most candidates find employment with a Bachelor’s Degree in mechanical engineering. This level of education is required by employers in the industry. In this course of study, students complete coursework in thermodynamics, computer science and kinetics. Those students who elect to pursue more advanced study in the field at the Master’s and Ph.D. level access career opportunities in advanced research, design and quality control. Coursework at the Master’s level explore theory in heat transfer and mechanics rooted in computer modeling and smart materials that respond to temperature change. Doctoral students embark upon classwork in granular flows, electronics architecture, data storage solutions, as well as material innovation, whereby they assume titled roles like consultant analyst, heat engineer and quality assurance manager. These highly trained professionals are actively recruited by federal organizations like the U.S. Department of Energy and the Defense Advanced Research Project Agency in order to teach both graduate and undergraduate students at esteemed universities around the world. Candidates are served by also developing broader skills in terms of written and oral communication, leadership, negotiating, multitasking as well as team-building and management capacities.

Tuesday, March 24, 2020

Electrical Engineer Salary and Career Advancement

Electrical Engineer Salary and Career Advancement

In 2010, electrical engineers earned as much as $84,540 in median annual wages according to the BLS. The top 10 percent highest earners received about $128,610 while the bottom 10 percent earners took home about $54,030. Among the highest paying electrical engineer jobs in industries employing the largest number of these professionals come from semiconductor and electronic manufacturing companies.
Employees in these firms usually earn about $92,070 on average. This was followed by scientific research and development firms that paid $90,970 in median annual wages.
Electrical engineers with a master’s degree or doctoral degree typically receive higher salaries than those who only obtained a bachelor’s degree. Like any other engineering career, salary rates depend on the employer, location, years of experience and educational background.
Electrical engineers may undergo further training or education in order to qualify for a position that will enable them to supervise a team of engineers and technicians. It may also qualify them for management positions. They can either be program managers or engineering managers. Alternatively, they can become instructors at universities or colleges.
Individuals who wish to become an electrical engineer should start their preparations as early as high school. They should have exceptional communication and math skills and be willing to work both indoors and outdoors.
Electrical engineers typically work together with other engineers and other professionals. With this, they should work comfortably and efficiently with a team. Experts highly recommend that graduates get into internship programs. Doing so will allow them to see the real employment world for electronic engineers.

Monday, March 23, 2020

Mining and Geological Engineering

Mining and Geological Engineering

Mining and geological engineering focuses primarily on the study and design of creating safe and effective means to extract metals and minerals for industrial, commercial and scientific purposes. Requiring education and understanding not only of mining principles and practices, engineers in this field are also expected to have an advanced and dynamic understanding of geological sciences, such as soil and mineral composition, surveying, prospecting and exploratory geological research. In addition to extracting the more conventional materials such as oil, precious and industrial metals and rarer gems and materials, many new advancements in information technology have expanded the role of geological engineering to search and mine for other materials, such as the dozens of special minerals and materials used in computer, tablet and smart phone construction.
At EducatingEngineers, we want you to understand the complexities of engineering careers and what it takes to succeed in your education. Please read the information below to learn more. And contact the schools in our directory to get started!
Working in the field
Employed by governments, major corporations, non-profit organizations and scientific/academic research institutions, geological engineers play pivotal roles in everything from industrial production of materials and energy, to advancing scientific understanding of the material composition of the Earth. Because of the numerous and varied functions for geological engineering and the substantial technological advancements made in the field itself, the role of the engineer in respect to mining and geological research continues to evolve, finding new and interesting applications for the science with each passing year.
The working and academic lives of a mining and geological engineer is one of constant problem solving, exploration, attention to detail and communication. As one of, if not the primary coordinator for digging and mining operations, the engineer is charged with the planning, logistics, safety assurance and contingency/emergency management of their projects. In addition to the technical engineering skills required for the surveying, planning, digging and extraction or study of materials, the project engineers are quite often also required to maintain strong lines of communication with the crews of professional miners or students they are working with. As such, and especially in respect to safety or emergency management, the numbers of women entering the fields has been steadily increasing.

Friday, March 20, 2020

Industrial Engineering Career Outlook and Salary

Industrial Engineering Career Outlook and Salary

It is expected that the employment of industrial engineers may grow 5 percent between 2012 and 2022. This is actually a lower expected growth rate than in many other careers, even in other branches of engineering. Industrial engineers are employed in a broad array of settings, and the type of work they do is very varied. Most industrial engineers work in manufacturing as well as in professional, technical, and scientific services. Median wages for industrial engineers in the United States as a whole were $80,300 in 2013, according to ONet. In New York State, the median wage for industrial engineers was $79,800, whereas in Texas the median wage is $91,800. In Florida, the median wage was $68,500. Clearly, different areas of the country pay industrial engineers very differently.
According to the US Bureau of Labor Statistics, the range between the lowest and highest paid percentages of industrial engineers was $52,000 yearly, or $24.98 hourly, versus $119,500 yearly, or $57.43 hourly as of 2013. Within the profession, the specific industry an individual works in, as well as the tasks they perform and how experienced they are is responsible for these differences.
Depending upon the specific tasks they are performing, industrial engineers work both in offices and in the settings they are working to improve. If they are observing problems, for instance, they may watch workers assemble parts in a factory, or staff performing their functions in hospitals. When solving problems, industrial engineers may work in an office at a computer, where they examine data that they themselves, or others, have gathered. Industrial engineers may need to travel for work in order to observe processes and make assessments in various work settings. In 2012, the industries that employed the greatest number of industrial engineers were: aerospace product and parts manufacturing, machinery manufacturing, architectural, engineering, and related services, motor vehicle parts manufacturing, and management of companies and enterprises. Industrial engineers need good interpersonal skills to be able to work alongside other professionals and serve as a bridge between the technical and business sides of an organization.
Recently, the University of Chicago conducted a study to obtain information about job satisfaction in the United States. Although job and career are not the only determinants of overall happiness and life satisfaction, they do contribute substantially to an individual’s sense of well-being. According to the study, the occupation “industrial engineer” was among the top ten careers associated with general happiness. In fact, it ranked ninth. When compensation for these top-ten careers was examined, “industrial engineers” ranked third.
When looking at the reported reasons for happiness, i.e. creativity, use of expertise, helping others, it is easy to understand why industrial engineers ranked in the top ten careers for happiness. IEs are trained to use quantitative and non-quantitative expertise in creative was to improve processes and products while making jobs easier and more efficient.

Thursday, March 19, 2020

Civil Engineering Degrees

Civil Engineering Degrees

"Civil engineering is the oldest and most diverse branch of engineering. In its broadest sense, the civil engineer adapts the physical features of the earth to the needs of society. According to the University of Florida, approximately one out of four engineers is engaged in civil engineering."
Civil engineers design, construct, maintain, and operate infrastructures, while simultaneously safeguarding the public and environmental health and upgrading neglected structures and systems. Civil engineering reaches from the natural environment to the constructed environment, focusing on interactions between the two, with an emphasis on sustainability.
Combining atmospheric and energy sciences, civil-engineers study climate, air pollution, and weather, addressing problems that might be solved through renewable energy systems. They examine the availability of renewable resources (wind, hydropower and solar), and best practices for their combinations. These kinds of research brought about the first data-based wind map and examine the effects of alternative fuels on air pollution...
Universities specializing in engineering fields offer master of science, master of engineering, and doctor of philosophy degrees in civil engineering as well as other branches of engineering technology. A well-rounded civil engineering program prepares students for careers in civil engineering or for advanced study in the field.

Wednesday, March 18, 2020

Audio Engineering Degrees

Audio Engineering Degrees

Audio engineering is an intricate blend of science and creativity. It involves technical aspects of equipment set-up and operation, but also requires a creative side to enhance and blend the sounds to produce the desired effects.
Often called sound engineers, these professionals are highly sought after in all areas of the entertainment industry. Musicians depend on audio engineers in the studio and in live performances to polish their sound and to keep it consistent throughout each recording or performance. Audio engineers mix the music and enhance the balance to provide the best final product. In television and movies, audio engineers are responsible for all of the sound effects, music, and sound levels heard in the video productions. Even radio depends on sound engineers to keep their stations operating properly. There are other careers available to audio engineers, but the entertainment industry provides the most opportunity.
For those interested in pursuing a career in the audio engineering field, there are three different levels of degrees available. An Associate in Applied Science will teach the basics of working in the industry. The Bachelor of Science degree goes more in depth in both the music and technical aspects of the business. The Master's degree programs focus on very specific aspects of audio engineering.
Both the Associate and Bachelor degrees require a minimum of a high school diploma, a GED certificate, or the equivalent. Different schools, particularly those offering Bachelor programs, may also have specific requirements for placement tests or minimum scores for standard college entrance tests, like the SAT or ACT. In addition to the school standards, strong math skills, a good grasp of music, and an understanding of technology are all beneficial skills in pursuing this course of study.

Tuesday, March 17, 2020

Computer Network Topologies

A Network Topology is the arrangement with which computer systems or network devices are connected to each other. Topologies may define both the physical and logical aspects of the network. Both logical and physical topologies could be the same or different in the same network.

Point-to-Point

Point-to-point networks contain exactly two hosts such as computers, switches or routers, servers connected back to back using a single piece of cable. Often, the receiving end of one host is connected to sending the end of the other and vice-versa.

If the hosts are connected point-to-point logically, then they may have multiple intermediate devices. But the end hosts are unaware of the underlying network and see each other as if they are connected directly.

Bus Topology

In the case of Bus topology, all devices share a single communication line or cable. Bus topology may have a problem while multiple hosts sending data at the same time. Therefore, Bus topology either uses CSMA/CD technology or recognizes one host as Bus Master to solve the issue. It is one of the simple forms of networking where the failure of a device does not affect the other devices. But the failure of the shared communication line can make all other devices stop functioning. Both ends of the shared channel have line terminator. The data is sent in only one direction and as soon as it reaches the extreme end, the terminator removes the data from the line.

Star Topology

All hosts in Star topology are connected to a central device, known as hub device, using a point-to-point connection. That is, there exists a point to point connection between hosts and hub. The hub device can be any of the following:


Monday, March 16, 2020

Computer Network Architect

Computer network architects are typically responsible for the planning, design and creation of corporate networks, information systems and servers. Their responsibilities may also include the operation of these systems, but it is more common for them to be dedicated to increasing efficiency, recommending and implementing upgrades and researching new developing technologies.
Your computer network architect job description should emphasize computer science knowledge and skills first and foremost. It is vital that any candidates you consider be fully trained with computer hardware and software.
Other attributes you should include on your job description include analytical skills organization, attention to small details and minor communication skills. These are all secondary requirements for computer network professionals, so you can include the attributes that are most important for your unique job opening. The following computer network architect job description shows how you can emphasize these requirements as effectively as possible.
If you are looking to use your computer science knowledge to make a real difference, consider joining our computer network architect team. Our engineers are responsible for creating information, networking and server systems to aid the daily operations of our corporation. You will help keep information flowing efficiently. The dynamic team of network architects works together to design and plan the computer systems. In addition to a firm foundation in computer science, you must have excellent communication and collaboration skills, as well as be organized and analytical. After initial setup is complete, you will maintain and upgrade the system as needed, meaning you must be able to evaluate its effectiveness.

Thursday, March 12, 2020

Computer Engineering Degree Education

Computer Engineering Degree Education

Computer Engineering degrees are available at all education levels: undergraduate, master’s and doctorate (PhD). Most undergraduate Computer Engineering programs allow you to specialize along one of several tracks because the entire career field is simply too broad to cover in an undergraduate program.
As you progress in your Computer Engineering career, you’ll be able to study increasingly complex topics in hardware and software systems. Occupying the top tier of Computer Engineering jobs are professionals with vast experience designing the overall system to control things like a passenger airliner, the International Space Station, or a nuclear power plant.
Computer Engineering requires a combination of skills from other engineering disciplines, and most colleges will require the same courses as prerequisites for their degrees. You’ll likely study mathematics up through Calculus, basic software programming, physics and electronic or electrical engineering basics.
Once your prerequisite courses are completed, you start the heart of the curriculum in Computer Engineering. In your upper level courses, you’ll learn how computer-controlled systems are designed from the bottom up. Microprocessor design, firmware creation and circuit boards are just a few of the topics you’ll study. The creation of a single computer is just the beginning. Advanced courses in Computer Engineering teach the techniques for integrating large numbers of computers into complex networks capable of solving massive computational problems.
There are many delivery methods for studying Computer Engineering. There are over 150 universities that offer an undergraduate program, and most top-tier state and private colleges offer Master’s and PhD programs also. You might also pursue a Computer Engineering degree with any of the reputable online colleges.
An undergraduate Computer Engineering degree typically takes four to five years to complete. A Computer Engineering Master’s Degree will normally be completed in two years on a full-time basis, and a doctorate can easily take three years to complete.
Read More: network architect

Wednesday, March 11, 2020

Automotive Engineering Career

Automotive Engineering Career

Engineering students should choose a college or university that is recognized by the Accreditation Board for Engineering and Technology (ABET). In evaluating an automotive engineer job applicant, some employers consider the reputation of the engineering school that the undergraduate attended more than any other factor. However, most employers focus more on the undergraduate's grades and amount of his or her hands-on experience. Consequently, any college or university that promotes national design and racing competitions in which the student gains hands-on experience would be a good choice. Students should also look for internships or other opportunities that will force them to apply coursework to real-life situations. Over time, the school will not be as important as the experience and skills the engineering the undergraduate offers.

Bachelor’s Degree

Because not many schools offer a bachelor’s degree program in automotive engineering, most aspiring automotive students enter a mechanical engineering program. This is because automotive engineering is an offshoot of mechanical engineering and therefore, many of the classes are the same. However, some schools offer mechanical engineering programs that include automotive engineering courses such as:
  • Automobile dynamics
  • Automotive electronics
  • Engine parts
  • Diesel engine theory
  • Alternative energy sources
  • Fuel cell systems
  • Powertrain dynamics
It usually takes four years to complete a bachelor's degree in engineering. During the last year, the student must finish a design project, either alone or with other students. After graduation, the new engineer must work under the supervision of a licensed professional engineer for a certain number of years, depending on the state, and pass and Engineer-In-Training exam and Professional Engineers exam to become a licensed professional engineer.
Read More: av technician tools

Tuesday, March 10, 2020

Life of an Electrical Engineer

Life of an Electrical Engineer


Electronic engineers perform their duties in offices and laboratories but may also be sent to work sites for supervising and troubleshooting. This is especially true for those who work in companies that manufacture complex equipment. They spend about 40 hours per week at work, but they may work longer than this.
A typical day for an electrical engineer varies depending on their employer. Those who work for the federal government may handle responsibilities in areas of research, development and electronic device evaluation that may cover systems for manufacturing, transportation, aviation and communication. Electrical engineers use design software and equipment in their projects.
A bachelor’s degree is needed to become an electrical engineer. This is an area of specialty in the engineering field, and these degrees will prepare an individual for an entry level job. It is important to start studying for their chosen career as early as high school.
Aspiring electrical engineers have to take as much math and science coursework as possible including algebra, calculus and trigonometry. Drafting courses are also valuable. This is mainly because engineering students are usually required to do technical drawings. Bachelor’s degrees take four years to complete and include laboratory, classroom and field work.
Electrical engineers may have to obtain a master’s degree or other training certifications in order to qualify for research positions. There are five-year programs that offer both bachelor’s and master’s degrees together. They should pass the Fundamentals Engineering exam to obtain a license after the bachelor’s degree and Principles and Practice of Engineering exam after an internship.

Thursday, March 5, 2020

The Future of the Internet of Things

The Future of the Internet of Things


As far as the reach of the Internet of Things, there are more than 12 billion devices that can currently connect to the Internet, and researchers at IDC estimate that by 2020 there will be 26 times more connected things than people.

According to Gartner, consumer applications will drive the number of connected things, while enterprise will account for most of the revenue. IoT adoption is growing, with manufacturing and utilities estimated to have the largest installed base of Things by 2020.

Interfacing things to the web yields many stunning advantages. We've all observed these advantages with our cell phones, workstations, and tablets, however this is valid for everything else as well. Also, indeed, I do mean the world.

The Internet of Things is really a truly basic idea, it implies taking all the things on the planet and associating them to the web.

I feel that perplexity emerges not on the grounds that the idea is so restricted and firmly characterized, but instead on the grounds that it's so wide and approximately characterized. It very well may be difficult to nail down the idea in your mind when there are such a significant number of models and conceivable outcomes in IoT.

To help explain, I believe it's imperative to comprehend the advantages of associating things to the web. For what reason would we even need to interface everything to the web?

Read More: define internet of things

Wednesday, March 4, 2020

What is the Internet of Things?

What is the Internet of Things?

The Internet of Things, or IoT, refers to the billions of physical devices around the world that are now connected to the internet, all collecting and sharing data. Thanks to the arrival of super-cheap computer chips and the ubiquity of wireless networks, it's possible to turn anything, from something as small as a pill to something as big as an aeroplane, into a part of the IoT. Connecting up all these different objects and adding sensors to them adds a level of digital intelligence to devices that would be otherwise dumb, enabling them to communicate real-time data without involving a human being. The Internet of Things is making the fabric of the world around us more smarter and more responsive, merging the digital and physical universes.

IoT can also make use of artificial intelligence (AI) and machine learning to aid in making data collecting processes easier and more dynamic.

The internet of things helps people live and work smarter, as well as gain complete control over their lives. In addition to offering smart devices to automate homes, IoT is essential to business. IoT provides businesses with a real-time look into how their systems really work, delivering insights into everything from the performance of machines to supply chain and logistics operations.

IoT enables companies to automate processes and reduce labor costs. It also cuts down on waste and improves service delivery, making it less expensive to manufacture and deliver goods, as well as offering transparency into customer transactions.

Read More: internet of things companies

Tuesday, March 3, 2020

The Impact of the Internet of Things

The Impact of the Internet of Things


To put things simply any object that can be connected will be connected by the IoT. This might not make sense for you on the forefront but it is of high value. With interconnected devices you can better arrange your life and be more productive, safer, smarter and informed than ever before.
For instance how easy it will be for you to start your day if your alarm clock is not only able to wake you up but also able to communicate with your brewer to inform it that you are awake at the same time notifies your geezer to start water heating. Or you wearable wrist health band keeps track of your vitals to inform you when you are most productive during the day. These are just few examples but applications of internet of things are numerous.
On large scale transportation, healthcare, defense, environment monitoring, manufacturing and every other field you can imagine of can be benefited from IoT. It is very to conceive the whole application domain of internet of things at the moment but you can clearly understand why it is such an interesting and hot topic at the moment.
Read More: What is the iot

Monday, March 2, 2020

The Internet of Things

The Internet of Things is really a truly basic idea, it implies taking all the things on the planet and associating them to the web.

I feel that perplexity emerges not on the grounds that the idea is so restricted and firmly characterized, but instead on the grounds that it's so wide and approximately characterized. It very well may be difficult to nail down the idea in your mind when there are such a significant number of models and conceivable outcomes in IoT.

To help explain, I believe it's imperative to comprehend the advantages of associating things to the web. For what reason would we even need to interface everything to the web?

The Internet of Things is transforming every corner of life: the home, the office, city streets and beyond. IoT products give us greater control over door locks, lights and appliances; offer insights into resource consumption habits; streamline business processes; and better connect us to the people, systems and environments that shape our daily lives.

Whether you’re a homeowner looking for the best products to start building your connected life, or a business leader looking to take your company to the next level — this is the place to begin. We’ve collected the best and most popular options the IoT has to offer, from smart home devices to enterprise platforms to the software and tools you need to build your own smart, connected products.

Businesses can leverage IoT applications to automate safety tasks (for example, notify authorities when a fire extinguisher in the building is blocked) to performing real-world A/B testing using networked cameras and sensors to detect how customers engage with products.

Read More: what is an iot device

Software Engineering Education Requirements

  Education Software Engineering degrees are available at the undergraduate, master’s, and doctorate (PhD) levels. As you move up in a Softw...