Friday, October 30, 2020

Master's in Electrical Engineering

 

Master's in Electrical Engineering

Some B.S. graduates seek postgraduate degrees such as master's (M.Eng./M.Sc.) or doctorate degrees (Ph.D./Eng.D.) in engineering. B.S. and master's degrees consist largely of coursework and research. Doctorate degrees focus mainly on research and often open doors to university research and teaching.

Universities with strong engineering departments offer graduate degrees and specialized certificates as well as teaching and research opportunities.

As with other engineering degrees, the bachelor's degree is based on laboratory and fieldwork not possible online. There is online access to master's degrees at some schools.

Arizona State University's MSE in electrical engineering offers online studies in solid-state electronics, power electronics, mixed-signal integrated circuit design, communications, and signal processing. Online master's-level courses are also available from several other schools of engineering.

Read More: cisco security certification

Thursday, October 29, 2020

Computer Engineering Education Requirements

 

Computer Engineering Education Requirements 

Computer Engineering degrees are available at all education levels: undergraduate, master’s and doctorate (PhD). Most undergraduate Computer Engineering programs allow you to specialize along one of several tracks because the entire career field is simply too broad to cover in an undergraduate program.

As you progress in your Computer Engineering career, you’ll be able to study increasingly complex topics in hardware and software systems. Occupying the top tier of Computer Engineering jobs are professionals with vast experience designing the overall system to control things like a passenger airliner, the International Space Station, or a nuclear power plant.

Computer Engineering requires a combination of skills from other engineering disciplines, and most colleges will require the same courses as prerequisites for their degrees. You’ll likely study mathematics up through Calculus, basic software programming, physics and electronic or electrical engineering basics.

Once your prerequisite courses are completed, you start the heart of the curriculum in Computer Engineering. In your upper level courses, you’ll learn how computer-controlled systems are designed from the bottom up. Microprocessor design, firmware creation and circuit boards are just a few of the topics you’ll study. The creation of a single computer is just the beginning. Advanced courses in Computer Engineering teach the techniques for integrating large numbers of computers into complex networks capable of solving massive computational problems.

There are many delivery methods for studying Computer Engineering. There are over 150 universities that offer an undergraduate program, and most top-tier state and private colleges offer Master’s and PhD programs also. You might also pursue a Computer Engineering degree with any of the reputable online colleges.

Read More: cisco certified security professional

Wednesday, October 28, 2020

Some of the Jobs for Civil Engineers

 

Some of the Jobs for Civil Engineers

Civil Engineers focus on six basic infrastructure systems. The structural engineer focuses on design and analysis of buildings and bridges. The geotechnical engineer designs and builds tunnels, pipelines, embankments, and foundations. The environmental engineer analyzes and solves problems involving air and water quality and management of waste and hazardous materials.

Water resources engineers seek ways to improve water sources through hydrology, meteorology, and fluid dynamics. Construction engineers manage projects for erecting buildings, digging tunnels, and laying roads. Transportation engineers design, construct and maintain highways, railways, airfields and ports.

Graduates work for nongovernmental organizations, private companies, government agencies, public or private institutions, national research laboratories, or educational institutions. As for research, while masters-degree graduates can be involved through projects or assignments, it is primarily only those at the Ph.D. level who perform research in this field.

Read More: cisco ccnp security

Tuesday, October 27, 2020

What is a Chemical Engineer?

 

What is a Chemical Engineer?

Chemical engineers are not only the lab coat wearing scientists who stand over beakers, mixing formulas in laboratories. They also work in the field, putting into practice the knowledge gained in laboratories, as well as their own brand of chemistry that applies the physical sciences and the life sciences.

They use mathematics and economics to create processes for converting raw materials or chemicals into forms that are more useful. Today's chemical engineers are involved with biomedical engineering, nanotechnology, and fuel cells, to name a very few of their specialties!

Chemical process engineers focus on the design, manufacture, and operation of industrial plants, their equipment, and the related chemical processes. Chemical product engineers development new or modified substances for consumables ranging from pharmaceuticals and face wipes, to furniture polish, foods, and far beyond.

Chemical engineers may do research at industrial or university levels, designing better pollution control, resource conservation, and safety measures. They can be involved in the design and construction of plants as project engineers, using their knowledge to select equipment, optimize production, minimize costs and increase profitability.

Read More: cisco certified network professional (ccnp)

Monday, October 26, 2020

Jobs You Can Get with a Biomedical Engineering Degree

 

Jobs You Can Get with a Biomedical Engineering Degree

Biomedical engineers design prosthetic limbs, artificial organs, and regenerate tissue. They create drugs and pharmaceuticals, collect and analyze biological data, and design life-saving equipment. They work with universities, hospitals, labs, government, industry, and regulatory agencies.

They work with doctors and patients seeking solutions to physical as well as physiological problems. It is important to incorporate into their own specialties any changes in related fields, so engineers scramble to stay abreast as technology rapidly evolves.

Universities teaching advanced levels of biomedical engineering commonly offer post-doctorate and research career opportunities. For example here is a list of research opportunities available through Florida A&M University:

  • Tissue Engineering for Bone and Cartilage Replacement
  • Advanced Polymeric Materials Characterization and Rheology
  • Magnetic Resonance Imaging of Cells, Tissues, and Organisms
  • Plasma Reaction Engineering for Pollution Control and Disinfection
  • Biomass Conversion to Energy by Enzymatic/Catalytic/Thermal/Plasma Methods
  • Advanced Computational Methods in Materials, Catalysis, and Transport
  • Solid State Materials Synthesis and Characterization

Wednesday, October 21, 2020

Applied Engineers Academic Preparation

 

Applied Engineers Academic Preparation

These professionals demonstrate a proclivity to blend technical expertise with real world applications. In industrial settings such as robotics, aviation, computer drafting, electronics, graphic communications, construction and nanofabrication, applied engineers exhibit a range of skills, as they daily execute a bevy of tasks and duties to realize the fruition of a project. They employ statistics in control charts and tables to monitor system integrity; examine and/or establish quality control systems in a facility; execute production timelines; refine inventory systems; utilize production innovation in enhancing management; maintain standards in accordance with federal and municipal codes in maintaining safety and health standards; develop solutions to industrial organization problems; apply marketing and business acumen in the product lifecycle, and more Top firms looking to hire applied engineers include Northrop Grumman, Ford Motor Company and Motorola, Inc.

A Bachelor’s Degree is required by employers to receive a job offer from a firm to work as an applied engineer. This course of study explores the application of principles regarding the design, and creation of products and systems within a manufacturing context. Programs delve into issues as quality control, project management, systems integration and manufacturing processes as well as strive to refine critical-thinking and problem-solving capacities. Students take classes in the basics of production planning, materials science and personnel safety. To assume management positions with some firms, advanced degrees such as a Master’s or Ph.D. may be required. Holders of advanced degrees also have the credentials to teach at the university level. From a business perspective, those seeking executive roles should work to develop their acumen in budget management and negotiation, as they will be asked to broker deals with suppliers and other assets. Superb oral and written communication skills as well as leadership abilities are highly coveted.

Read More: firewall certifications

Monday, October 19, 2020

Masters of Agricultural Engineering

 

Masters of Agricultural Engineering

The master of agriculture gives students management-oriented graduate training. Emphasis is on problem solving through science and technology—not research. Problem-solving capabilities must be demonstrated, usually through an internship that provides practical experience. These candidates prepare a professional paper on a problem-solving accomplishment.

Graduate degrees in food engineering/technology through distance learning are available as are online graduate programs and courses. Online studies for B.S. degrees are not possible due to the required laboratory studies and fieldwork.

Standard B.S. degrees in agricultural engineering take about four years to complete, but students who want to add to their major or minor studies can take extend the journey. A master's degree generally adds another 12-18 months—time well invested.

Food will always be a growing commodity (no pun intended). Jobs for these engineers are found on farms, in manufacturing plants, equipment design, food production, animal production facilities, laboratories, construction, government systems that protect soil and water, and in biofuels engineering—worldwide (for the traveler in you) and just for starters.

These engineers are part of the leadership that help conserve, maintain, and improve our natural resources and environment. These employees will provide engineering assistance to his or her team, field office personnel, and landowners with planning, developing, and constructing on-farm conservation practices and irrigation projects statewide.

Read More: field network professionals

Friday, October 16, 2020

Associate Degree in Aerospace Engineering

 

Associate Degree in Aerospace Engineering

There are small number of schools that offer associate degrees in aerospace engineering, but they usually reserve those degrees for engineers who have degrees in related fields, such as mechanical, electrical or computer engineering. Generally, the aerospace industry prefers job seekers with four-year Bachelor of Science degrees.

There are only a handful of universities accredited by the Accreditation Board for Engineering and Technology in the United States that offer aerospace engineering degrees. Aerospace engineers take two years of calculus, differential equations, physics and chemistry and two years of engineering coursework. Aerospace engineering students can expect to see the following engineering courses in their university's curriculum:

In terms of career choices, the aerospace field is projected to grow 5% between 2010-2020 according to the Bureau of Labor Statistics (BLS). Aerospace engineering majors can choose variety of career paths, including positions in scientific research, engineering design and development, field service, management, marketing, software development and teaching.

The two main branches of aerospace engineering degrees are aeronautics and astronautics. Some universities have curriculum's that embrace both areas, while others separate the two fields and offer degree programs in either aeronautics or astronautics. Aerospace engineering majors should be prepared to engage in a significant amount of actual design and implementation in addition to coursework.

In addition, students should seriously consider learning Russian, Japanese or German because many people of these nationalities are deeply involved in the development of spacecraft components.

Read More: computer network architecture

Thursday, October 15, 2020

Salary and Useful Resources for Acoustical Engineers

 

Salary and Useful Resources for Acoustical Engineers

The Technology Student Association (TSA), and the National Society of Professional Engineers (NSPE), provide members and interested parties with comparable tools and information to enhance their value in the contemporary marketplace. All of these institutions publish recent research and logistics regarding industry events and resources to the further refine the prowess of practitioners.

Students and job seekers particularly benefit from involvement with these groups, as the institutions provide invaluable networking and mentoring opportunities for individuals to develop relationships with potential employers and their contemporaries in the field. Esteemed firms such as Boeing, Procter & Gamble, and Universal Studios have sought candidates through these avenues. According to the U.S. Bureau of Labor Statistics (BLS), the job growth projections for acoustical engineers remains strong through 2020, where hiring is projected to grow by 10 percent. The states of California, Texas and Michigan possess the greatest opportunities for professionals. While exact statistics on the median salary of these professionals is unavailable, O*Net reports that electrical engineers of the same background command a yearly salary of $89,180.

Read More: what is a network architect

Wednesday, October 14, 2020

Transport Engineering Career Outlook

 

Transport Engineering Career Outlook

Transportation engineering focuses on the design and development of public transportation infrastructure and systems. As a discipline of civil engineering, practitioners endeavor to create roads, bridges, mass transit systems and other modes of transport to enhance society. In this capacity, these practitioners may design, operate and repair any of these assets with the aim of producing fast, efficient, safe, cost-effective, and sustainable forms of transport. Airport, highway, railroad and port engineering are all subsets of the discipline.

On a daily basis, transport engineers juggle a medley of tasks from interfacing with clients and suppliers in-person and over e-mail to meeting with their teams to receive project status updates and to address any complications in a project lifecycle. More business-oriented professionals may attend strategy sessions with their executive teams and/or meet with current and potential investors to discuss prospective opportunities in the market place. In the evenings, many professionals engage in continuing education initiatives, whereby they may take a course on new technological advances and/or attend a presentation by an academic or industry practitioner to receive insight on best practices or solutions to existing problems.

National and local governments as well as private firms seeks to employ these professionals for global projects, where they are given the responsibility to ensure safety and efficiency, whereby they are entrusted to ensure public safety by meeting building codes and standards through computer hardware and software applications.

Read More: n networking

Tuesday, October 13, 2020

Real-Life Impact of Thermal Engineers

 

Real-Life Impact of Thermal Engineers

Thermal engineers have been instrumental in changing the way people find and use energy throughout the world as well as in pushing space exploration into new realms. Most people think of Google as an Internet search engine company, but the firm has expanded its resources into creating better energy solutions for the planet. The firm actively recruits thermal engineers to work on its project for developing clean and affordable power grids. Their Energy Access team endeavors to recruit and nurture engineers to its efforts, underscoring its conviction in its identity as an engineering firm.

Moreover, the University College London (UCL) Mullard Space Science Laboratory considers the work of its thermal engineers as vital for enhancing space exploration initiatives. One of their professionals, Christine Brockley-Blatt, has exemplified the seamless transition these practitioners make from the classroom to real world applications. After completing her undergraduate degree in Mechanical Engineering and Physics, Brockley-Blatt completed an internship with an aerospace firm, whereby she trained on a project dealing with the landing gear and propeller technology for a medley of aircraft models. She then applied more of her thermal engineering training to an automotive firm. With UCL she currently works as a project manager on cooling technology in outer space exploration solutions. On a daily basis, she employs calculations in mechanical and thermal capacities, performs project management duties, and demonstrates oral and written communications. Her rich educational background and professional experience illuminate the depth and versatility the field requires of its practitioners to excel.

Read More: ccp security

Friday, October 9, 2020

Software Engineering Career Advancement

 

Software Engineering Career Advancement

The job market for Software Engineers is incredibly broad. There are software components involved in virtually every modern development you can think of. Computers control everything from aircraft to medical imaging devices, and these systems are conceived and executed by Software Engineers.

Since it’s such a big part of our daily lives, most people think immediately of software running on the Internet when they envision a career in this arena. While there are a plethora of rewarding jobs developing software for use on the Internet, it’s a good thing to know that there are also rewarding jobs in areas like computer simulations, artificial intelligence, real-time systems, aerospace, and embedded systems.

Salary

According to an October 18th, 2012 report on GlassDoor.com, Software Engineers at top companies average $92,648 annually. Google topped the compensation charts, paying their Software Engineers an average of $128,336.

The US Government’s Bureau of Labor Statistics reports earnings on multiple software development jobs, none specifically labeled as Software Engineers. However, the average annual earnings reported for several different Software Engineering-related career fields corroborate the salary figures reported by GlassDoor.

Read More: computer network companies

Thursday, October 8, 2020

The Prerequisites for Petroleum Engineering

The Prerequisites for Petroleum Engineering

This curriculum combines college-level mathematics with basic sciences, developing a working knowledge of thermodynamics, material properties, fluid mechanics, material strengths, transport situations, and phase behavior (what to expect from resources when working with them).

Students develop competence in well design and analysis, drilling procedures, and evaluation of subsurface geology. They design and analyze systems that produce, inject, and handle fluids, optimizing resource development and management, using reservoir engineering principles and practices. They are proficient with project economics and resource valuation practices for decision-making under risky and uncertain conditions.

Topping off this degree is a design experience, preparing students for engineering practice, using the knowledge and skills acquired in their coursework. Drilling in deserts and in deep waters requires today's engineers to have expertise in intelligent systems, geomechanics, and hydraulics, naming only a few things on their growing list of knowledge bases.

Read More: computer network architecture

Wednesday, October 7, 2020

Nuclear Engineering Degree through Online Study

 

Nuclear Engineering Degree through Online Study

A number of colleges and universities offer online nuclear engineering studies toward master's and doctoral degrees. Some of these universities include, but are not limited to, Penn State, MIT, and Ohio State.

Online nuclear engineering degrees open a wide range of opportunities for students, at both graduate and postgraduate levels. A graduate degree in nuclear engineering opens doors to better job opportunities.

The Bachelor of Science degree in Nuclear Science and Engineering is a basic four-year course, but a specialized five-year course can incorporate a master's degree. The Ph.D. degree generally adds two years of study beyond the master's.

Because nuclear science and engineering has such a broad range, graduates can be prepared for a wide variety of careers. Today's graduates enjoy research and teaching jobs at universities; they work at power plants and in government and industrial laboratories. They have launched LED lighting companies. They manage hedge funds, create interactive science and art displays, design new reactors, improve aircraft components, attend medical school, and design domestic energy policies.

Bureau of Labor statistics for 2011 show nuclear engineers earning a mean annual wage of $105,160, a bottom average wage of $67,100, and a top wage of $147,670. Rise in employment was estimated at 9.4 percent.

Read More: computer network architect job description

Tuesday, October 6, 2020

Mining and Geological Engineering

Mining and Geological Engineering

Mining and geological engineering focuses primarily on the study and design of creating safe and effective means to extract metals and minerals for industrial, commercial and scientific purposes. Requiring education and understanding not only of mining principles and practices, engineers in this field are also expected to have an advanced and dynamic understanding of geological sciences, such as soil and mineral composition, surveying, prospecting and exploratory geological research. In addition to extracting the more conventional materials such as oil, precious and industrial metals and rarer gems and materials, many new advancements in information technology have expanded the role of geological engineering to search and mine for other materials, such as the dozens of special minerals and materials used in computer, tablet and smart phone construction.

At EducatingEngineers, we want you to understand the complexities of engineering careers and what it takes to succeed in your education. Please read the information below to learn more. And contact the schools in our directory to get started!

Employed by governments, major corporations, non-profit organizations and scientific/academic research institutions, geological engineers play pivotal roles in everything from industrial production of materials and energy, to advancing scientific understanding of the material composition of the Earth. Because of the numerous and varied functions for geological engineering and the substantial technological advancements made in the field itself, the role of the engineer in respect to mining and geological research continues to evolve, finding new and interesting applications for the science with each passing year.

Read More: network architect

Monday, October 5, 2020

Mechatronic Engineers Career Outlook

 

Mechatronic Engineers Career Outlook

Companies like Harris & Bruno have formed partnerships with schools like Sierra College in California to seamlessly integrate students from the classroom to apply their knowledge to real-world mechatronics applications. Markus Fredrickson, a Sierra College student, works part-time in manufacturing at Harris & Bruno. When he first began his education, he did not have a clear direction for his career. However, the collaborative approach of his university and the private enterprise has provided him with direction and a practical outlet for his skills. He described his work with the firm as a seamless experience bridging his classroom education with real-world scenarios. Many of the parts and systems he encountered in his classroom work echoed the very same components and problems he was asked to solve on the job. Ultimately, he found his theoretical and practical education as invaluable in facilitating his career advancement. These types of programs reflect the potential for students and companies as they integrate their resources and expertise in growing the industry. This boasts well for both current and prospective professionals in the field and the industry as a whole as more evolutions occur in terms of technology and human resources.

If you would like to learn more about mechatronics or other areas of engineering, contact the schools in our directory to receive more helpful information. We recommend contacting multiple schools to be sure you choose the best one for you!

Read More: network architects job description

Thursday, October 1, 2020

Materials Science and Engineering Degree

Materials Science and Engineering Degree

Few studies are as vital to the advancement of industry as Materials Science and Engineering. Focused on the study, discovery and creation of new physical materials for use in everything from medicine, automotive and aerospace engineering and consumer goods, to rocketry and space exploration, careers in Materials Science and Engineering maintain a heavy focus on attention to detail, critical thinking and problem solving skills. As an “interdisciplinary science,” Materials Science and Engineering combines a variety of specific skills and studies, varying upon the professional or scientific objectives of the student. With strong emphasis in areas such as mathematics, thermodynamics, chemistry, bio-chemistry and materials properties (mechanical, transitional, chemical,) Materials Science and Engineering is a study which focuses on the physical materials used in given applications, for the purposes of research, safety, quality control and in certain professional areas, forensic engineering and investigation.

If you are ready to learn more about this area of engineering, contact the schools in our directory to learn more about their degree programs. We work with these schools directly and do not charge for our services. We simply want to help students like you understand your options!

Classically referred to as “metallurgy” in many schools and training programs, Materials Science and Engineering is generally regarded as a relatively new field of study, combining older metallurgic arts and understanding with newer studies of things such as atomic structure, applied physics and the creation and study of newer synthetic materials. Professional opportunities in the field cover a broad spectrum of industrial and scientific sectors, ranging from basic scientific research and discovery to applicable industry specific occupations in fields such as bio-technology, defense and consumer product engineering.

Read More: computer network architect jobs

Software Engineering Education Requirements

  Education Software Engineering degrees are available at the undergraduate, master’s, and doctorate (PhD) levels. As you move up in a Softw...